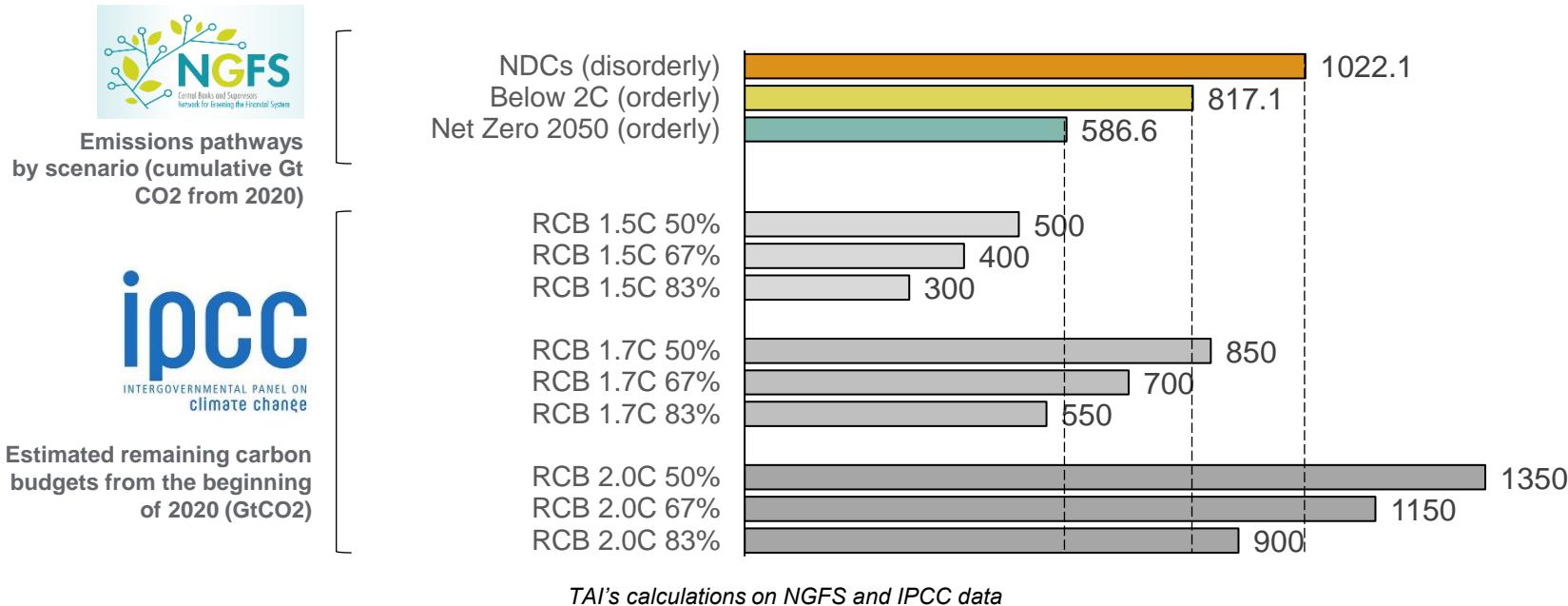


Review of mainstream net zero emissions scenarios

IFT Macro working group



Emission pathways analysis

(Global) Carbon budget vs. emissions pathways

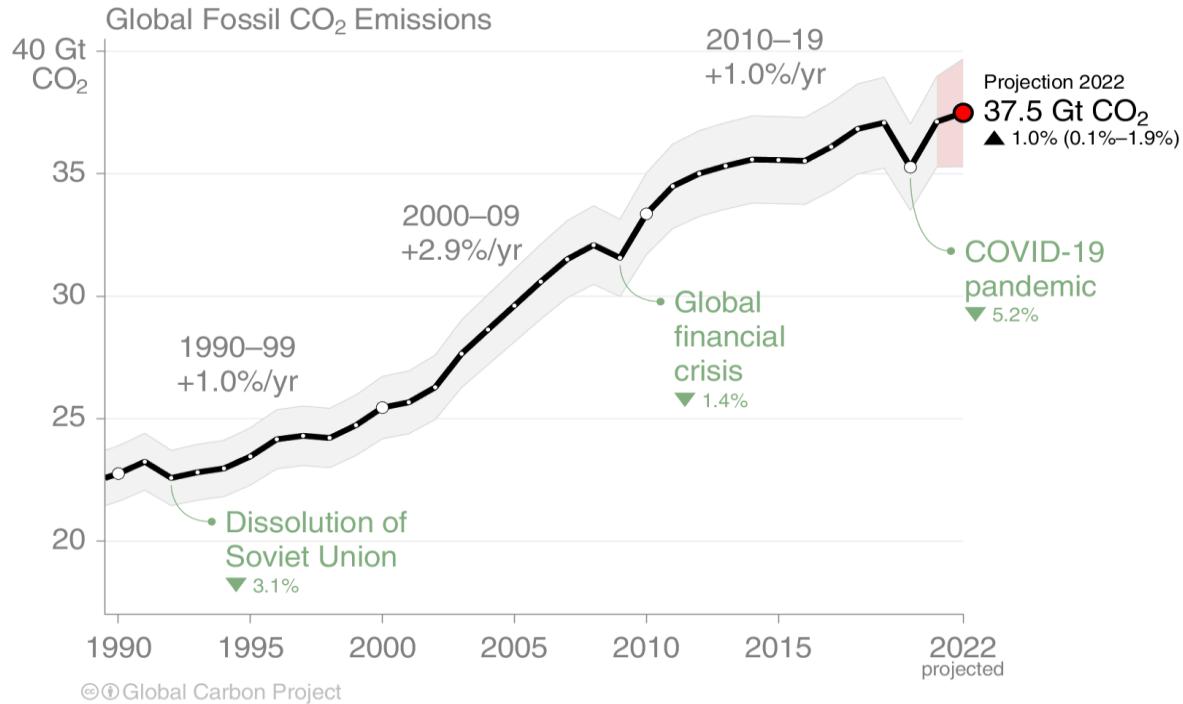
The IPCC defines the remaining carbon budget (RCB) as the total net amount of CO2 emissions that can still occur while limiting global warming to a specified level (eg 1.5C or 2C). Different probabilities of success yield different carbon budgets. Grey bars in the chart below.

We compare the RCBs with the cumulative anthropogenic CO2 emissions for 3 scenarios projected by NGFS and IEA (coloured bars)

(Global) Carbon budget vs. emissions pathways

The IPCC defines the remaining carbon budget (RCB) as the total net amount of CO₂ emissions that can still occur while limiting global warming to a specified level (eg 1.5C or 2C). Different probabilities of success yield different carbon budgets. Grey bars in the chart below.

We compare the RCBs with the cumulative anthropogenic CO₂ emissions for 3 scenarios projected by NGFS and IEA (coloured bars)

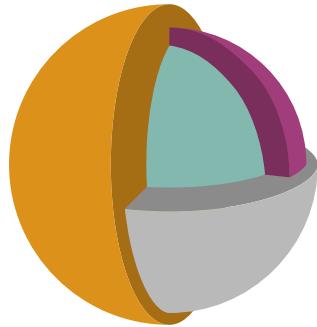

When does 'the' carbon budget run out?

For the 1.5C temperature target, the carbon budget will be depleted much earlier than 2050 for almost all combinations of probability and scenario

		NGFS			IEA		
		NDCs (disorderly)	Below 2C (orderly)	NZ 2050 (orderly)	STEPS	APS	NZ 2050
1.5C	50%	2034	2035	2039	2034	2036	>2050
	67%	2031	2032	2034	2032	2032	2035
	83%	2029	2029	2030	2029	2029	2030
1.7C	50%	2045	>2050	>2050	2045	>2050	>2050
	67%	2040	2044	>2050	2040	2045	>2050
	83%	2036	2037	2043	2036	2038	>2050
2.0C	50%	>2050	>2050	>2050	>2050	>2050	>2050
	67%	>2050	>2050	>2050	>2050	>2050	>2050
	83%	2047	>2050	>2050	2046	>2050	>2050

TAI's calculations on NGFS and IPCC data

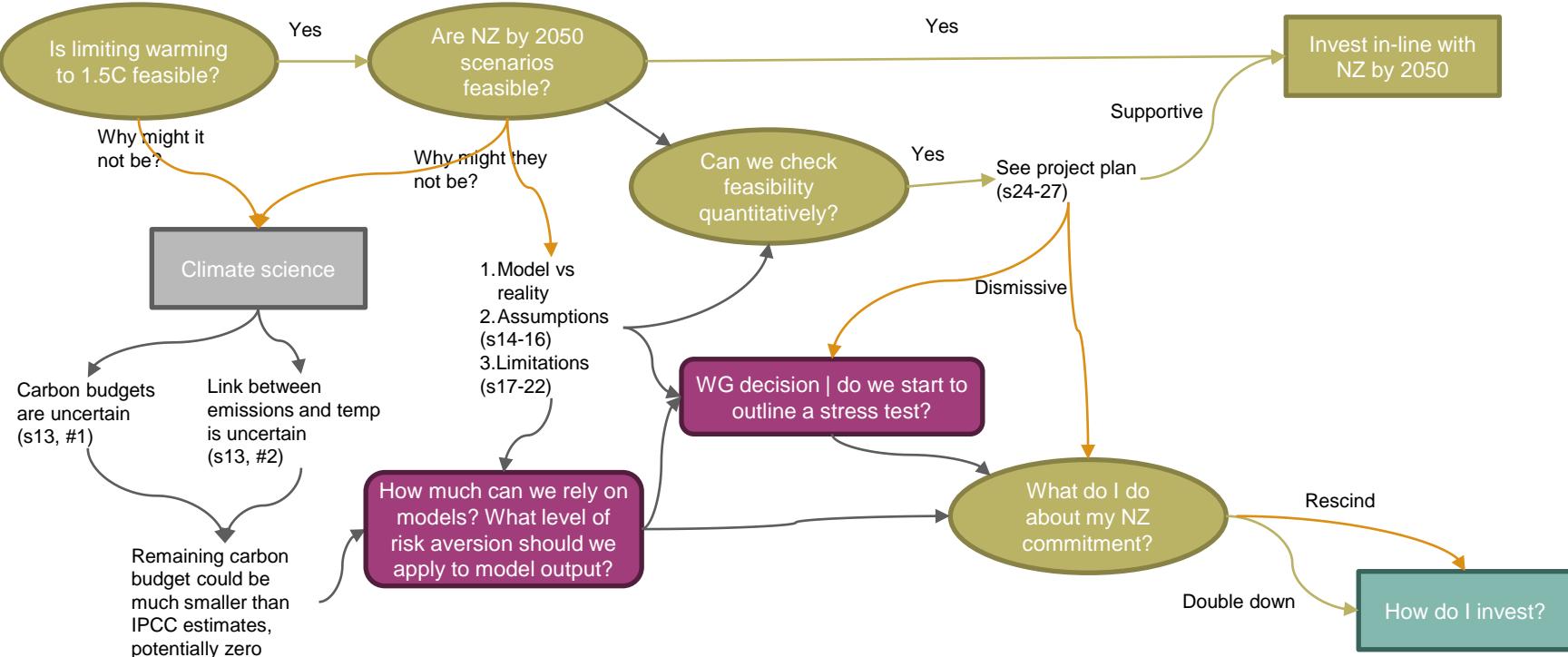
Historic CO2 emissions



CO₂ emissions from land-use change in 2022 (projected) 3.9Gt (±2.6Gt)

Total CO₂ emissions c 41.5Gt

Source: Global Carbon Project


Summary of qualitative assessment of IEA NZE scenario (slides 13-22)

- An arguable carbon budget is fully spent
- Unnatural orderliness
- No risk buffer
- 'Priced to perfection'
- NZE is a partial real-world scenario, not a financial scenario. It is built by the energy industry, for the energy industry. It is NOT a financial stress test

Context	Key item	Implicit assumption/ limitation
Climate science	Carbon budget	<ul style="list-style-type: none"> ▪ Wide error ranges ▪ Based on subjective assumptions ▪ Not acceptable chance of failure (50%)
	GHG concentration and temperature rise	<ul style="list-style-type: none"> ▪ Equilibrium climate sensitivity (ECS) is uncertain ▪ Earth system sensitivity (ESS) is greater, implying >3C warming at current GHG levels
General commentary on NZE scenario		<ul style="list-style-type: none"> ▪ Role of government in scenario differences ▪ Differential pace of NZE by economies ▪ Orderly transition assumptions
Open questions on climate policies and strategies		<ul style="list-style-type: none"> ▪ Fossil fuel prices, carbon price, biofuels, emissions removal
Model assumptions assessment	Basic assumptions (on some modules of the IEA GEC model)	<ul style="list-style-type: none"> ▪ Perfect competition ▪ Perfect information, atomic agents ▪ Price signalling -> rational decision making ▪ Perfect foresight: complete market knowledge
	Variability	<ul style="list-style-type: none"> ▪ Lack of transparency and comparability in model assumptions and outcomes, and difficulties in assessing likelihood and financial risks of scenarios
	Understanding of transition narrative	<ul style="list-style-type: none"> ▪ Assumptions of frictionless transition and absence of feedback mechanisms ▪ No adequate capture of the complexity of the transition to a low-carbon economy ▪ Lack of understanding of the potential severity and timescales of climate-related risks
	Model oversimplifications	<ul style="list-style-type: none"> ▪ Limited capacity to incorporate complexities (non-linearity, tipping points, uncertainty) ▪ Neglected climate events and links between climate, ecosystems and natural resources often excluded ▪ Insufficiently capture acute physical risk shocks ▪ Rational expectation assumptions don't reflect reality
	Information loss along the climate scenario modelling chain	<ul style="list-style-type: none"> ▪ Scenario modelling may result in information loss ▪ Insufficient passthrough of extreme tail risks and variation ▪ IAMs lack sub-sectoral and country-specific breakdowns ▪ Lack of scenario and model granularity

The feasibility of net-zero investing

Scenario assumptions assessment

IEA net zero emissions (NZE) scenario assumptions | explicit and implied

Climate science provides less certainty than implied by climate scenarios

1. There is a carbon budget of 500 GtCO2e available (implying a 50% chance of not exceeding 1.5C). Source IPCC
 - In what other area of risk management is a 50% chance of failure acceptable? Lower chance of failure = lower carbon budget = IEA NZE no longer holds
 - Carbon budgets have wide error ranges (>100%). Uncertainties noted in IPCC SR1.5 are (i) uncertainty in climate response +/- 400Gt, (ii) carbon & methane release -100Gt, and (iii) non-CO2 mitigation +/- 220 Gt
 - The IPCC carbon budgets depend on their own assumptions [which, arguably, do not hold]: (a) strong action on non-CO2 emissions [methane levels are at an all time high (\approx 1C of warming)], (b) no big shift in the Atlantic meridional overturning circulation (AMOC) [probably weakening], and that we do not cross any unexpected tipping points [temperature thresholds have been reduced through time, with possibility that we have passed one or two already]
 - From the IPCC AR6 FAQ: "Estimating the size of remaining carbon budgets depends on a set of choices. [...] These choices can be informed by science, but ultimately represent subjective choices." ([here](#))
2. We know the relationship between atmospheric GHG concentration and temperature rise
 - The main assumption here is equilibrium climate sensitivity (ECS), which is how much we expect the planet to warm when we double GHGs. The stable consensus has been 3C for 2x GHGs (we have already doubled GHGs)
 - ECS is uncertain. IPCC AR6 report gave a range of 2.5C – 4C, with an 18% chance of being greater than 4.5C
 - ECS includes some simplifying assumptions. In particular it assumes ice sheets and vegetation are fixed, which they are not. Earth system sensitivity (ESS) models what happens as vegetation, ice sheets and other factors change. It is assumed to be greater than ECS, suggesting that we could exceed 3C of warming at current levels of GHGs (ie net zero tomorrow)
 - It takes time for the Earth to warm, giving a window of opportunity to reduce GHGs to safe levels before this heating occurs

IEA NZE scenario assumptions | explicit and implied (2)

General commentary regarding all IEA scenarios. From [here](#)

3. Decisions made by governments are the main differentiating factor between scenarios
 - Insert your own belief re government action here
4. Advanced economies move to achieve net zero emissions at a faster pace and thus earlier than in other IEA scenarios, and earlier than emerging market and developing economies
 - On one level this is uncontroversial (eg China aiming for NZ by 2060, India by 2070). On another it implies that developed countries will agree to decarbonise more quickly than current commitments
5. NZE assumes an orderly transition. This includes ensuring the security of fuel and electricity supplies at all times, minimising stranded assets where possible and aiming to avoid volatility in energy markets
 - See next slide for detailed commentary

IEA NZE scenario assumptions | explicit and implied (3)

IEA global energy and climate (GEC) model

6. Perfect competition

- This refers to a standard set of assumptions from economics. Among this set, competitive energy markets are characterized by perfect information and atomic economic agents, which together preclude any of them from exercising market power (see next bullet). These assumptions are described for a sub-model (TIMES), but the effect of various constraints means that equilibrium is not (or is unlikely to be) reached in the main model.
- While we could criticise each of the standard assumptions, we acknowledge that it is very difficult to build a tractable model without them (the main alternative would be to use agent-based modelling, and embrace different problems). We therefore restrict ourselves to only note that the Russia/Ukraine-induced energy shock demonstrates that these assumptions are unrealistic. In particular, it appears clear that some agents, or groups of agents, do have market power and can move prices. Consequently, real-world experience is unlikely to be as smooth (orderly) as the model suggests.

7. Perfect foresight

- This belongs within the standard set of economic assumptions, but we draw it out here to emphasise that real-world disorder is more likely.
- The perfect foresight assumption means each agent has complete knowledge of the market's parameters, present and future. In other words, amongst other things, energy capacity can be added or withdrawn with no (costly) mistakes. We suggest mistakes are likely, and that energy supply could oscillate between shortage and glut.

IEA NZE scenario assumptions | explicit and implied (4)

From [here](#)

8. International fossil fuel prices (p19)

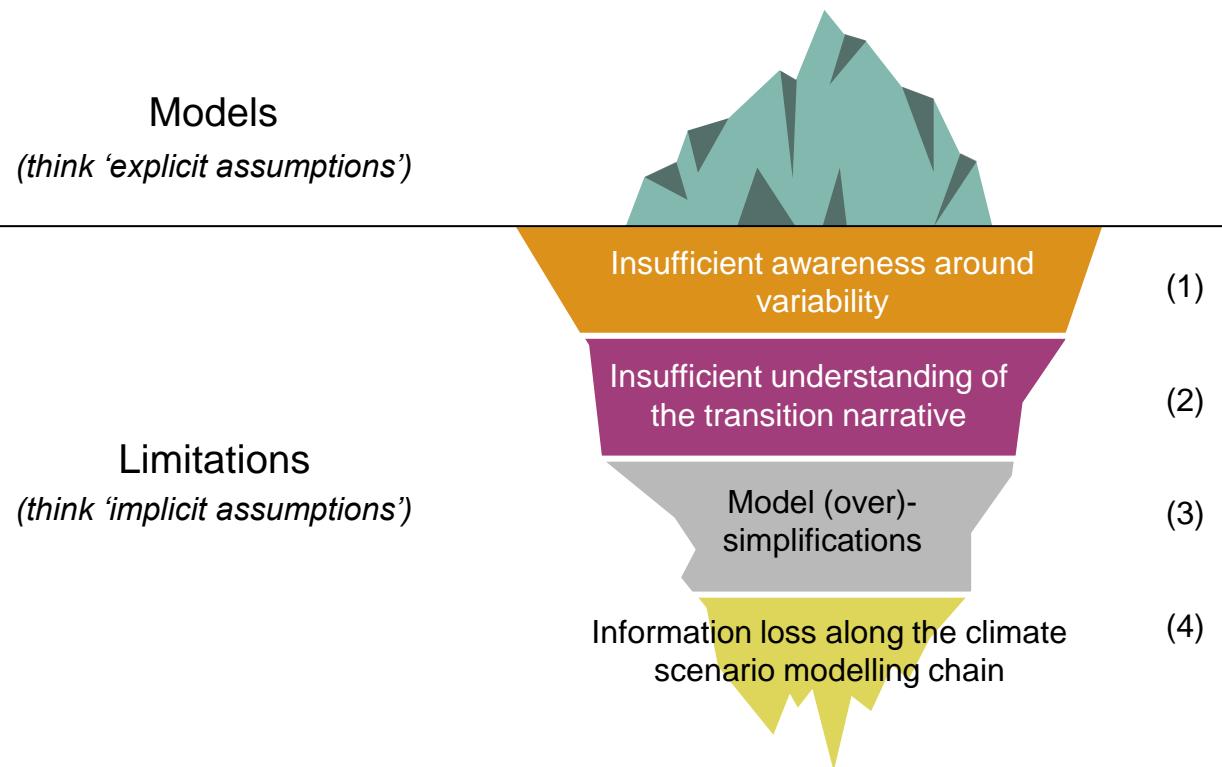
- “Bioenergy is an important renewable energy option in all of its forms” [13% of total energy supply 2030 (renewables inc bio 31%); 19% 2050 (70%)] Q: do we agree? Where do we stand on this highly-divided issue?

9. Carbon price (p18)

- NZE CO2 price / tonne in 2030 is \$140 in advanced economies with NZ pledges (lower in other countries). This would add \$62 per barrel of oil (0.4261 tonnes of CO2 per barrel). How reasonable is this assumption?

10. Biofuels (p19)

- In the IEA scenarios this is an input – and reflects the price level required to stimulate the required level of supply. In the real world, price and quantity are jointly determined. Quantity can be influenced through high prices (see carbon price below), or other measures such as a ban on new supply (exploration). For illustration, NZE crude oil price/barrel in 2030 is \$35.


11. Emissions removal

- [in 2050 DAC is removing 393Mt pa, a 23% CAAGR for 29 years] Q: can anything grow at 23%pa for 29 years?
- [over same 2021-2050 period CO2 emissions fall in industry (10%pa), transport (8.8%pa), buildings (13%pa)]
- [NZ requires 1.5Gt pa removal by 2050, with vast majority coming from bioenergy] Q: (see above) does bioenergy count as carbon removal? Does bioenergy at this scale compromise agriculture or reforestation?

[data from IEA spreadsheet]

Model assumptions assessment from main providers (IEA, NGFS, IPCC)

Source: [Toward a framework for assessing and using current climate risk scenarios within financial decisions](#)

(1) Variability and (2) Understanding of transition narrative

Source: [Toward a framework for assessing and using current climate risk scenarios within financial decisions](#)

1. Insufficient awareness around variability of parameters and/or assumptions

- Lack of transparency of model's key assumptions
- Lack of comparability across scenario providers (eg how the energy system is modelled)
- Significant variability in the financial risk outcomes
- Difficulties in attaching a likelihood, and judging the level of conservativeness of some key assumptions (eg how likely are each of the scenarios against each other; what are the consequences for carbon-intensive energy firms and resulting financial risks from a faster uptake of renewables than anticipated in the IEA scenarios)

2. Insufficient understanding of transition narrative

- Different macroeconomic model types lead to significant differences in the transition narrative
 - Some general equilibrium models impose restrictions on the money supply (Pollitt and Mercure, 2017). This leads to additional public sector spending (eg investment in renewables) crowding out private sector investment. Within these models, the transition to a low-carbon economy is framed as diverting away from a general equilibrium, with the economic system recovering from such a deviation and bouncing back to an equilibrium (Bolton et al., 2020). This shift is associated with high economic cost in the short-medium turn (Mercure et al., 2019)
 - Other model approaches account for crowding in effects, and therefore new spending/investment has wider positive effects. These models frame the transition as having a positive net economic effect (Mercure et al., 2019)

(2) Understanding of transition narrative (cont)

Source: [Toward a framework for assessing and using current climate risk scenarios within financial decisions](#)

Assumptions of frictionless transition and absence of feedback mechanisms

Economic and financial frictions

- Most climate scenarios rely on integrated assessment models (IAM) based on optimum policy pathways which represent smooth trends along the time horizon to reduce complexity
- Traditional macroeconomic models (adopted by providers) are not suitable for capturing associated frictions (eg rapid large-scale transformation to a low carbon economy and potential short-term volatility along the transition pathway)
- Models' assumptions do not adequately cover the spectrum of discrete shock events (eg failure of adopted policy pathways)

Energy system frictions

- Models assume a smooth transition to low-carbon technologies without friction (eg lobbying for/against carbon tax may increase as the energy system becomes greener)
- Amplification mechanisms are often ignored (green technology investment reduces cost and increases competition with fossil fuels, driving further green investment)
- Tipping points cause sudden asset stranding without smooth divestment due to rapid system shifts

Labour market frictions

- Limited representation of labour frictions that might create bottlenecks when transitioning to a net-zero energy system

(2) Understanding of transition narrative (cont 2)

Source: [Toward a framework for assessing and using current climate risk scenarios within financial decisions](#)

Assumptions of frictionless transition and absence of feedback mechanisms (cont)

Financial market frictions

- Assumptions may lead to misaligned expectations on financial markets
 - Brown and green companies may be valued differently by investors' belief in the green transition. Realignment of stock price?
 - This may trigger rapid system movement, causing sudden stress and slowing investment for transition
 - Current scenarios do not account for such behavioural frictions and feedback mechanisms between the real economy and financial markets

Policy frictions

- Existing scenarios use carbon tax as a policy proxy, but it has limitations, such as insufficient geographical differentiation, distortionary effects of other policies, and failure to represent misalignments between climate commitments of different jurisdictions (Mercure et al, 2019)
- Existing scenarios fail to consider the delay between policy implementation and real-world emission reduction due to assuming an instantaneous market response in models (Asefi-Najafabady et al, 2021)

(3) Model (over)simplifications

Source: [Toward a framework for assessing and using current climate risk scenarios within financial decisions](#)

- **Neglected climate events** | several phenomena induced by climate change such as migration, crop yield shocks, and social instabilities in exposed regions, as well as feedback loops are neglected in IAMs and hence cannot be represented in climate pathways for financial exercises (Asefi-Najafabady et al, 2021; Weyant, 2017)
- **Climate links** | the links between climate, ecosystems and natural resources (eg soil, water, forestry) which are known to be important drivers of financial risk (Dasgupta, 2021) are often excluded
- **Non-incorporation of environment risks** | Almeida et al, 2023 highlight existing scenarios used by central banks and FIs currently do not sufficiently incorporate broader environmental risks, such as nature-related risks, in part due to methodological challenges around modelling nature-economy interactions with financial sector dependence
- **Complexity and non-linearity** | more broadly, IAMs remain limited in their capacity to incorporate complexities in relation to non-linearity, tipping points, and uncertainty
- **Rational expectation** | rational expectation assumptions lead to individual components of the system being optimised. However, real behaviour is different, as participants have limited knowledge to make appropriate choices. For instance, reflecting the behaviour of fossil-fuel dependent states in supporting international climate negotiations and carbon tax policies remains irrational, with many geopolitical factors around comparative advantages driving decisions (Mercure et al, 2021)
- **Physical shocks** | current model approaches and scenarios insufficiently capture acute physical risk shocks in models that aim to capture the climate responses to assumed emission pathways (Pitman et al, 2022; Ranger et al, 2021)

(4) Information loss along the climate scenario modelling chain

Source: [Toward a framework for assessing and using current climate risk scenarios within financial decisions](#)

Information loss and insufficient passthrough

- Scenario modelling chains include various sub-models that are linked together, subsequently feeding into macroeconomic and lastly financial models
- Simplified transmission channels and interaction effects with varying degrees of granularity may result in significant information loss and an increase in the uncertainty along the modelling chain
- Especially, the insufficient passthrough of extreme tail risks, cross-sectional and geographical variation ultimately results in a loss of information that would be needed by the financial sector

Loss of information and relevant risk variation

- Most IAMs and macroeconomic models do not feature a firm-level, sub-sectoral and country-specific breakdown of climate-adjusted economic pathways. Therefore IAMs may produce sub-sectoral impacts from regional climate policies, which are then translated into financial pathways using a macro-model that lacks the sophistication to reflect sub-sectoral dynamics (eg NGFS's *NiGEM*)
- The resulting impact and risk distribution will therefore miss relevant variation. When such impacts serve as inputs into financial models to uncover risk at the counterparty level (eg to assess the transition impact on FIs balance sheet) this will not be directly possible without additional downscaling or expansion of the initial scenario pathways

Scenario and model granularity

Models lack sufficient granularity needed by the financial sector and too much room is left for scenario expansion to adequately capture the full spectrum of the risk range

Limitations of reliance and contact details

Limitations of reliance – Thinking Ahead Group 2.0

This document has been written by members of the Thinking Ahead Group 2.0. Their role is to identify and develop new investment thinking and opportunities not naturally covered under mainstream research. They seek to encourage new ways of seeing the investment environment in ways that add value to our clients.

The contents of individual documents are therefore more likely to be the opinions of the respective authors rather than representing the formal view of the firm.

Limitations of reliance – WTW

WTW has prepared this material for general information purposes only and it should not be considered a substitute for specific professional advice. In particular, its contents are not intended by WTW to be construed as the provision of investment, legal, accounting, tax or other professional advice or recommendations of any kind, or to form the basis of any decision to do or to refrain from doing anything. As such, this material should not be relied upon for investment or other financial decisions and no such decisions should be taken on the basis of its contents without seeking specific advice.

This material is based on information available to WTW at the date of this material and takes no account of subsequent developments after that date. In preparing this material we have relied upon data supplied to us by third parties. Whilst reasonable care has been taken to gauge the reliability of this data, we provide no guarantee as to the accuracy or completeness of this data and WTW and its affiliates and their respective directors, officers and employees accept no responsibility and will not be liable for any errors or misrepresentations in the data made by any third party.

This material may not be reproduced or distributed to any other party, whether in whole or in part, without WTW's prior written permission, except as may be required by law. In the absence of our express written agreement to the contrary, WTW and its affiliates and their respective directors, officers and employees accept no responsibility and will not be liable for any consequences howsoever arising from any use of or reliance on this material or the opinions we have expressed.

Contact Details

Tim Hodgson | tim.hodgson@wtwco.com

Andrea Caloisi | andrea.caloisi@wtwco.com